What can we learn from the Fascia Congress?

This issue of JBMT contains important papers that derive from the 1st International Fascia Research Congress held at Harvard Medical School Conference Center, Boston, on October 4/5, 2007.

The content includes abstracts, expanded abstracts and original papers that describe plenary presentations. The October issue of JBMT (12(4)), as well as the January 2009 (13(1)) issue, will also contain a large number of such papers (as well as a number of normal, non-congress, submissions).

The task of organising the publication of this selection of papers and abstracts has involved dedicated efforts from JBMT’s editorial team of associate editors and reviewers, and I wish to thank them all, with particular emphasis on the work of Glenn Hymel EdD and his excellent team of Editorial Advisory Board reviewers, who methodically worked their way through all the papers, evaluating methodology and statistical accuracy. Others who provided major support during the review process (which is ongoing as I write) were associate editors John Hannon, DC and Dimitrios Kostopoulos, PhD.

The various plenary speakers from the Congress, who responded positively to my request for submissions summarising the work they had presented at the Congress, as well as those who expanded their abstracts, also deserve sincere thanks.

If you read through the Congress material in this and subsequent issues, you may come to some profound realisations, including:

- Fascia is involved in force transmission from one tissue to another, and this has major implications in explaining how the body functions, and how manual methods can be used to influence distant tissues (Stecco et al., 2008).
- The ability of fascia to smoothly glide and move on other tissues can be compromised, producing restrictions, and suggesting therapeutic possibilities (Fourie, 2008).
- Mechanical forces, including those associated with manual treatment, influence cells and molecules via mechano-transduction, producing changes in intracellular biochemistry and gene expression. What we do therapeutically to the body directly influences cellular behaviour. Structure truly does govern function (Ingber, 2008; Wipff and Hinz, 2008).
- Tissue forces, created by acupuncture stimulus, appear to propagate their effects via fascial structures (Fox et al., 2008).
- Forces applied (manually or by other means) to cells (e.g. fibroblasts, the principle cell type within the fascia) involve particular “strain directions”. For example, myofascial release (MFR) can produce “clinician-directed strain enhancement of ATP-dependent cytokine secretion [that] may underlie the clinical anti-inflammatory benefits seen post-MFR, such as improved range of motion (ROM), decreased oedema, and reduced analgesic requirements” (Standley and Meltzer, 2008).

...and much much more.

If, as we now know, manually applied forces, have profound and often predictable, local and distant influences, what we need to discover, via research, is which combination of forces (compression, distraction, shear, etc.—and how these are applied—degree, duration, etc.) offer the most effective means of achieving optimal outcomes in particular clinical settings?

That task will be explored further at the 2nd Fascia Congress in Amsterdam in October 2009.

References


Chaitow Leon ND, DO
University of Westminster, London, UK
E-mail address: leonchaitow1@mac.com